

L1 Calorimeter Trigger at $\mathcal{L}=2\times10^{33}$

Pamela Chumney
University of Wisconsin

PRSJM Meeting 30 August 2001

http://cmsdoc.cern.ch/~wsmith/Trigger2e33.pdf

Rates

- Rates estimated using old 10³³ data (nTuples from Spring 2000 production
- Weighted by an additional factor of 2 over old 10³³ data
 Results
 - threshold tables for several calorimeter trigger rate targets
 - 12.5 kHz, 10 kHz, 8 kHz, 6 kHz, and 4 kHz
 - many physics channels explored
 - different physics priorities explored
 - balance rates of e/γ and jet triggers
 - Main Goal: keep physics efficiencies as high as possible

Rate plots for e/γ, τ-jets and jets

Low Luminosity e/γ trigger rates

Single e/γ at 27 GeV cutoff: 1.7 kHz

Low Luminosity Tau and Jet Trigger Rates

Single τ at 80 GeV: 6.5 kHz

Single jet at 120 GeV: 2.4 kHz

Same data as in Trigger TDR for $\mathcal{L}=10^{33}$

only the weighting has changed by a factor of two

Why these rate choices?

Different DAQ staging gives different rate limits

- 100 kHz overall rate limit:
 - 75kHz ÷ 3 safety factor × 1/2 for calo = 12.5 kHz as in TDR
- 50 kHz overall rate limit
 - 50 kHz ÷ 3 safety factor × 1/2 for calo = 8 kHz
 - 50 kHz ÷ 3 safety factor × 2/3 for calo = 10 kHz
- 25 kHz overall rate limit
 - 25 kHz ÷ 3 safety factor × 1/2 for calo = 4 kHz
 - 25 kHz ÷ 3 safety factor × 2/3 for calo = 6 kHz

Results

General Comments

- Only isolated electrons (low \mathcal{L} in TDR used non-iso as well)
 - no B physics
- All algorithms are as in the Trigger TDR
- No generator level cuts other than requiring e and τ to be in tracker
 - $|\eta_{e,\tau}| < 2.5$
 - Note: no off-line jet and missing E_⊤ Cuts on invisible higgs underestimate the efficiency
- No threshold increases for missing E_T and total E_T

Physics channels

- Six channels for H $\rightarrow \tau\tau$ and e/ γ are all with TDR 10³³ data
- All other channels are produced at UW on Condor or at FNAL
 - Proper 3.4 events of pileup
 - Newer versions of CMSIM and ORCA

Target Rate 12.5 kHz

Two scenarios (p. 10 and p. 15 of note)

- emphasize higgs channels (p. 10)
 - good efficiencies for low mass higgs → close to 90%
 - h→bb is low not expected to exceed 90%
- Balance e/γ and jet rates to capture channels like W→ev and t→eX (p. 15)
 - W→ev improved over above higgs favored scenario above
 - H(200) $\rightarrow \tau \tau \rightarrow jj$ drops below 90%
 - Some slight improvements in electron channels

Channel	higgs emphasized	τ Contribution	e Contribution	e/γ and jet balanced	τ Contribution	e Contribution
H(200)→ττ→jj	92%	85%	n/a	84%	68%	n/a
H(200)→ττ→ej	89%	65%	64%	92%	47%	75%
t→eX (tag jets)	95%	65%	65%	95%	49%	74%
W→ev	55%	n/a	55%	68%	n/a	68%

P. Chumney, University of Wisconsin

Target rate 10 kHz

Again two scenarios (p. 11 and p. 16 of note)

- higgs emphasis (p. 11)
 - Increased thresholds of mixed channels
 - Low mass higgs channels around 90%
- e/γ and jets balanced scenario (p. 16)
 - Better response of electron dependent channels
 - Slight threshold increases for mixed channels
 - Will higher e-jet make up for worse jet-jet?

Channel	higgs emphasized	1. τ Contribution	1. e Contribution	e/γ and jet balanced	2. τ Contribution	2. e Contribution
H(200)→ττ→jj	90%	85%	n/a	82%	68%	n/a
H(200)→ττ→ej	88%	65%	64%	91%	47%	73%
t→eX (tag jets)	90%	65%	65%	90%	49%	72%
W→ev	55%	n/a	55%	66%	n/a	66%

P. Chumney, University of Wisconsin

Other rates

8 kHz, 6 kHz (p. 12 and p. 13 of note)

- Jet/τ thresholds increased
- Necessary increases in electron thresholds
 - decreases seen overall

4 kHz (p. 14 of note)

 very poor performance: jet and electron thresholds too high

• H(200)→ττ→jj: 67%

• t→jets: 70%

• W→ev: 47%!

Summary

10 kHz seems to be the very lowest rate we can take without hurting the discovery physics

- maintain high efficiency for lower mass higgs to e,jets
- PRS requested balanced e/γ and jet rates study Studies need to be made with new 2×10³³ data available at FNAL
 - Hope that with new the τ algorithm the balanced scenario will improve for H(200)→ττ→jj
 - verify rates and pileup effects
 - rates by September
 - produce updated second note by October